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Abstract A classic result of Ritt describes polynomials invertible in radicals: they
are compositions of power polynomials, Chebyshev polynomials and polynomials of
degree at most 4. In this paper we prove that a polynomial invertible in radicals and
solutions of equations of degree at most k is a composition of power polynomials,
Chebyshev polynomials, polynomials of degree at most k and, if k ≤ 14, certain
polynomials with exceptional monodromy groups. A description of these exceptional
polynomials is given. The proofs rely on classification of monodromy groups of prim-
itive polynomials obtained by Müller based on group-theoretical results of Feit and
on previous work on primitive polynomials with exceptional monodromy groups by
many authors.

Keywords Topological Galois theory · Solvability in k-radicals · Exceptional
polynomials

1 Introduction

This paper is devoted to a generalization of a result of Ritt on polynomials invertible
in radicals:

Theorem 1 (Ritt 1922)The inverse function of a polynomial with complex coefficients
can be represented by radicals if and only if the polynomial is a composition of linear
polynomials, the power polynomials z → zn ,Chebyshev polynomials and polynomials
of degree at most 4.
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In the paper we give a complete description of polynomials invertible in k-radicals,
i.e. in radicals and solutions of equations of degree atmost k. Themain result appears in
Theorem 2. A more complete description of polynomials appearing in its formulation
appears in Sects. 6.1–6.5.

The description of polynomials invertible in k-radicals uses deep group-theoretical
result of Feit on primitive permutation groups containing a full cycle, its refinement
obtained by G. Jones and work of P. Müller that builds on it to provide a classification
of monodromy groups of primitive polynomials.

Description of the polynomials with primitive monodromy groups that appear in
formulation of Theorem 2 is known, but scattered among many papers, and not for-
mulated in a way that we needed for our purposes. To get a description that suited
our purposes we consulted P. Müller. We are also thankful to Alexander Zvonkin
who helped us understand many of the results. However we didn’t obtain an exhaus-
tive description of the exceptional polynomials of degree 15. An attempt at such a
description can be found in Cassou-Noguès and Couveignes (1999) in the context
of a different problem, however the results formulated in that paper are not detailed
enough. We provide some information about these polynomials in 6.4 taken directly
from Cassou-Noguès and Couveignes (1999).

Wewould like to thank P.Müller for his answers to our questions.We are especially
thankful to Alexander Zvonkin, whose generous help had been of great use to us.

2 Formulation of the Problem and Its Answer

Definition 1 Let k be a natural number. A field extension L/K is k-radical if there
exists a tower of extensions K = K0 ⊂ K1 ⊂ · · · ⊂ Kn such that L ⊂ Kn and for
each i , Ki+1 is obtained from Ki by adjoining an element ai , which is either a solution
of an algebraic equation of degree at most k over Ki , or satisfies ami = b for some
natural number m and b ∈ Ki .

Definition 2 An algebraic function z = z(x) of one variable is said to be representable
in k-radicals if the extension K (z)/K is k-radical, where K = F(x) is the field of
rational functions over the base field F .

In particular an algebraic function is representable in 1-radicals if and only if it is
representable in radicals.

In this paper we prove the following theorem:

Theorem 2 A complex polynomial is invertible in k-radicals if and only if it is a
composition of polynomials of degree at most k, power polynomials, Chebyshev poly-
nomials and polynomials from the following list (which depends on k):

1. for 1 ≤ k ≤ 4, polynomials of degree at most 4,
2. for k = 5, polynomials of degree 6withmonodromy group isomorphic to PGL2(5)

with its natural action on the points of the projective line P1(F5),
3. for k = 6, polynomials of degree 10 with monodromy group isomorphic to

P�L2(9) with its natural action on the points of the projective line P1(F9),
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4. for k = 7, polynomials from list 3 above and polynomials of degree 8 with mon-
odromy group isomorphic to PGL2(7) with its natural action on the points of the
projective line P1(F7),

5. for 8 ≤ k ≤ 14, polynomials from list 3 and polynomials of degree 15 with
monodromy group isomorphic to PSL4(2)with its natural action either on points,
or hyperplanes of the projective space P3(F2).

Remark 1 In particular for k ≥ 15 a polynomial is invertible in k-radicals, if and only
if it is a composition of power polynomials, Chebyshev polynomials and polynomials
of degree at most k.

3 Ritt’s Theorem

Theorem2onpolynomials invertible in k-radicals canbe considered as a generalization
of Theorem 1 of Ritt on polynomials invertible in radicals. The outline of its proof is
as follows:

1. Every polynomial is a composition of primitive ones Every polynomial is a com-
position of polynomials that are not themselves compositions of polynomials of
degree 2 and higher. Such polynomials are called primitive.

2. Reduction to the case of primitive polynomials It follows from the definition of
being invertible in radicals that a composition of polynomials is invertible in rad-
icals if and only if each polynomial in the composition is invertible in radicals.
Indeed, if each of the polynomials in composition is invertible in radicals, then
their composition also is. Conversely, if a polynomial R appears in the presentation
of a polynomial P as a composition P = Q ◦ R ◦ S and P−1 is representable
in radicals, then R−1 = Q ◦ P−1 ◦ S is also representable in radicals. Thus it is
enough to classify only the primitive polynomials invertible in radicals.

3. Galois group is responsible for representability in radicals It follows from Galois
theory that an algebraic equation over a field of characteristic zero is solvable in
radicals if and only if its Galois group is solvable.

4. A polynomial is invertible in radicals if and only if its monodromy group is solvable
A polynomial p(x) is invertible in radicals if and only if the Galois group of the
equation p(x) = w over the field k(w) is solvable. According to a result of Jordan,
for k = C this group can be identified with the monodromy group of the function
p−1(w).

5. A result on solvable primitive permutation groups containing a full cycle It follows
from what we said above that a primitive polynommial is invertible in radicals if
and only if its monodromy group is solvable. Since the monodromy group acts
primitively on the branches of inverse of the polynomial and contains a full cycle
(corresponding to a loop around the point at infinity on the Riemann sphere),
the following group-theoretical result of Ritt is useful for the classification of
polynomials invertible in radicals:

Theorem 3 Let G be a primitive solvable group of permutations of a finite set X
which contains a full cycle. Then either |X | = 4, or |X | is a prime number p and X
can be identified with the elements of the field Fp so that the action of G gets identified
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with the action of the subgroup of the affine group AGL1(p) = {x → ax + b|a ∈
(Fp)

∗, b ∈ Fp} that contains all the shifts x → x + b.

6. Monodromy groups of primitive polynomials invertible in radicals It can be shown
by applying Riemann–Hurwitz formula that among the groups in Theorem 3 only
the following groups can be realized as monodromy groups of polynomials: (1)
G ⊂ S(4), (2) cyclic group G = {x → x + b} ⊂ AGL1(p), (3) dihedral group
G = {x → ±x + b} ⊂ AGL1(p).

7. Primitive polynomials invertible in radicals It can be easily shown (see for instance
Ritt 1922; Khovanskii 2007; Burda and Khovanskii 2011) that the following result
holds:

Theorem 4 If the monodromy group of a polynomial is a subgroup of the group
{x → ±x + b} ⊂ AGL1(p), then up to a linear change of variables the polynomial
is either a power polynomials or a Chebyshev polynomial.

Thus the polynomialswithmonodromygroups 1–3 are respectively (1) Polynomials
of degree four. (2) Power polynomials up to a linear change of variables. (3) Chebyshev
polynomials up to a linear change of variables.

In each of these cases the fact that the polynomial is invertible in radicals follows
from solvability of its monodromy group or from explicit formulas for its inverse (see
for instance Burda and Khovanskii 2011).

The outline of the proof of Theorem 2 is completely parallel to the outline discussed
above. For the step 3 we use results from Khovanskii (2008), for step 5—results from
Feit (1980) and Jones (2002), for step 6—results from Müller (1993), Jones (2002)
and, finally, for step 7—results from Jones and Zvonkin (2002), Adrianov (1997),
Cassou-Noguès and Couveignes (1999) and personal communication with P. Müller
and A. Zvonkin.

4 Background on Representability in k-Radicals

It follows from the definition of a polynomial invertible in k-radicals that a composition
of polynomials is invertible in k-radicals if and only if each one of the polynomials in
composition is invertible in k-radicals. Thus a polynomial is invertible in k-radicals
if and only if it is a composition of primitive polynomials invertible in k-radicals. In
what follow we only consider primitive polynomials invertible in k-radicals.

Invertibility of a polynomial in radicals depends only on its monodromy group:

Definition 3 A group G is [k]-solvable if there exist subgroups 1 = G0 	 G1 	 · · · 	
Gn−1 	 Gn = G such that for each i > 0, Gi/Gi−1 is either abelian, or admits a
faithful action on a set with ≤ k elements.

It can be easily shown that this definition is equivalent to the following:

Definition 4 A group G is [k]-solvable if there exist subgroups 1 = G0 	 G1 	 · · · 	
Gn−1 	Gn = G such that for each i > 0, Gi/Gi−1 is a simple group, which is either
abelian, or contains a subgroup of index ≤ k.
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The following result from Khovanskii (2008) describes when a field extension is
k-radical:

Theorem 5 An extension L/K of fields of characteristic zero is k-radical if and only
if the Galois group Gal(L/K ) is [k]-solvable.

In particular a polynomial is invertible in k-radicals if and only if its monodromy
group is [k]-solvable.

5 Results of Feit, Müller and Jones

The following result on primitive permutation groups containing a full cycle had been
derived by Feit as a consequence of classification of finite simple groups (Feit 1980).
We provide a version of it due to Jones (2002) (the one provided in Feit 1980 was not
complete in case 4):

Theorem 6 A primitive group of permutations of n elements contains a full cycle if
and only if one of the following conditions holds:

1. G = Sn
2. n is odd,G = An is the group of even permutations acting naturally on n elements,
3. n is prime, Cn ⊆ G ⊆ AGL1(n) acting naturally on the field Fn , where Cn

denotes a cyclic group of shifts inside the affine group AGL1(n).

4. n = qd−1
q−1 , where q is a power of prime and PGLd(q) ⊆ G ⊆ P�Ld(q) acting

naturally either on points or on hyperplanes of the projective space Pd−1(Fq),
5. n = 11 and G = PSL2(11) acting on 11 cosets of one of two of its subgroups of

index 11,
6. n = 11 and G is Mathieu group M11 acting naturally on 11 elements,
7. n = 23 and G is Mathieu group M23 acting naturally on 23 elements.

Using this result, and Riemann–Hurwitz formula, Müller proved the following
result on monodromy groups of primitive polynomials (Müller 1993):

Theorem 7 A group of permutations of n elements is a monodromy group of a prim-
itive polynomial if and only if one of the following conditions holds:

1. G = Sn
2. n is odd,G = An is the group of even permutations acting naturally on n elements,
3. n is prime, Cn ⊆ G ⊆ Dn = {x → ±x + b mod n} acting naturally on the field

Fn ,
4. n = 11 and G = PSL2(11) acting on 11 cosets of one of its subgroups of index

11,
5. n = pd−1

p−1 , where p is a prime number and G = PGLd(p) acting naturally either

on points or on hyperplanes of the projective space P(Fd
p ), where (p, d) is one of

the following pairs: (5, 2), (7, 2), (2, 3), (3, 3), (2, 4), (2, 5) (in these cases n is,
respectively 6,8,7,13,15,31)

6. n = qd−1
q−1 , where q is a power of a prime number and G = P�Ld(q) act-

ing naturally either on points or on hyperplanes of the projective space P(Fd
q ),
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where (q, d) is one of the following pairs: (8, 2), (9, 2), (4, 3) (in these cases n is,
respectively 9,10,21)

7. n = 11 and G is Mathieu group M11 acting naturally on 11 elements,
8. n = 23 and G is Mathieu group M23 acting naturally on 23 elements.

6 [k]-Solvable Monodromy Groups of Primitive Polynomials

According to Theorem 5 a polynomial is invertible in k-radicals if and only if its
monodromy group is [k]-solvable, i.e. if its monodromy group G contains subgroups
1 = G0 	 G1 	 · · · 	 Gn−1 	 Gn = G such that for each i > 0, Gi/Gi−1 is a simple
group which is either abelian or contains a subgroup of index ≤ k.

For each group from Theorem 7 we can determine the smallest k for which it is
[k]-solvable:
Theorem 8 Let G be a group of permutations of n elements, appearing in Theorem
7. The group G is [k]-solvable if and only if:

1. k is any natural number and

G = Sn, n ≤ 4 or

n is prime and Cn ⊆ G ⊆ Dn = {x → ±x + b mod n}
2. k ≥ n and

G = Sn , or

G = An for odd n ≥ 5, or

G = PSL2(11) or G = M11 for n = 11, or

G = M23 for n = 23, or

G = PGL3(2) for n = 7, or

G = PGL3(3) for n = 13, or

G = PGL5(2) for n = 31, or

G = P�L3(4) for n = 21, or

G = P�L2(8) for n = 9,

3. G = PGL2(5), k ≥ 5,
4. G = P�L2(9), k ≥ 6,
5. G = PGL2(7), k ≥ 7,
6. G = PGL4(2), k ≥ 8.
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Proof LetG be a finite group and let {e} = G0	G1	· · ·	Gn = G be its composition
series. Then the smallest k for which G is [k]-solvable is the smallest k for which all
the composition factors Gi+1/Gi are either abelian or contain a proper subgroup of
index at most k.

The group An , n ≥ 3 doesn’t contain a proper subgroup of index smaller than n
(otherwise An can be embedded in Sk for k < n and n!/2 is < k!).

The group An is a composition factor of groups Sn and An , n ≥ 5 from Theorem
7, and hence these groups are [k]-solvable only for k ≥ n.

The simple groups M11 and M23 don’t have a proper subgroup of index smaller
than 11 and 23 respectively (Conway et al. 1985), and thus they are k-solvable only
for k ≥ 11 and k ≥ 23 respectively.

Compositional factors of groups PGLn(q) and P�Ln(q) (for n ≥ 2 and q �= 2, 3)
are either abelian or isomorphic to the simple group PSLn(q), as can be seen from
the natural homomorphisms onto abelian groups P�Ln(q) → Aut(Fq) with kernel

PGLn(q) and PGLn(q)
det−→ F∗

q /(F∗
q )n with kernel PSLn(q) ((F∗

q )n is the subgroup
of invertible elements of Fq that are n-th powers). For small n and q the smallest index
of a proper subgroup of PSLn(q) can be found in Conway et al. (1985) (we use the
notation Ln(q) for PSLn(q)).

G L2(5) L2(7) L3(2) L2(11) L2(8) L2(9) L3(3) L4(2) L3(4) L5(2)

k 5 7 7 11 9 6 13 8 21 31

In all the cases except L2(5),L2(7),L2(9),L4(2) this k coincides with the number
of elements on which the corresponding group from Theorem 7 acts.

In cases L2(5),L2(7),L2(9),L4(2) one has the following exceptional isomorphisms:
PSL2(F5) = A5, PSL2(F7) = PSL3(F2), PSL2(F9) = A6, PSL4(F2) = A8. �


A polynomial of prime degree with cyclic or dihedral monodromy group is, up to a
linear change of variables, a power polynomial or Chebyshev polynomial respectively.
Thus we obtain the following theorem:

Theorem 9 A primitive polynomial is invertible in k-radicals if and only if it has
degree at most k, or one of the following conditions holds:

1. 1 ≤ k, the degree of the polynomial is a prime number and up to a linear change
of variables the polynomial is a power polynomial or Chebyshev polynomial,

2. k ≤ 3, the degree of the polynomial is 4,
3. k = 5, the degree of the polynomial is 6 and its monodromy group is PGL2(5),
4. 6 ≤ k ≤ 9, the degree of the polynomial is 10 and its monodromy group is

P�L2(9),
5. k = 7, the degree of the polynomial is 8 and its monodromy group is PGL2(7),
6. 8 ≤ k ≤ 14, the degree of the polynomial is 15 and its monodromy group is

PGL4(2).

The polynomials appearing in the exceptional cases 3–6 can be described explicitly:
in cases 3–5 there is only a finite number of such polynomials up to a linear change of
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variables, while in case 6 equivalence classes of such polynomials up to linear change
of variables form two one-parametric families. Below we describe such polynomials.
To describe these polynomials we will use the following notions (see Lando and
Zvonkin 2013; Khovanskii and Zdravkovska 1996):

Definition 5 The passport of a polynomial of degree n is the set of partitions of n
corresponding to the cycle decompositions of the local monodromy operators at the
polynomial’s finite ramification points.

Definition 6 The Dessin d’enfant of a polynomial having two finite ramification
points is a planar graph whose vertices are the preimages of the finite ramification
points of the polynomial, and whose edges correspond to preimages of an interval
connecting the two finite ramification points.

6.1 Polynomials, Invertible in 5-Radicals

According to Theorem 9, polynomials invertible in 5-radicals are compositions of
power polynomials, Chebyshev polynomials, polynomials of degree at most 5 and
polynomials of degree 6 with monodromy group isomorphic to the group PGL2(5)
with its natural action on the 6 points of the projective line over the field F5 (the dual
action of the group PGL2(5) on hyperplanes of the projective line over F5 is the same
as the action on points, since in this case hyperplanes are in fact just points).

Theorem 10 A primitive polynomial of degree six is invertible in 5-radicals if and
only if one of the following conditions holds:

• The monodromy group of the polynomial is isomorphic to the group PGL2(5) with
its natural action on P1(F5)

• The passport of the polynomial is [2212, 4112]
• Dessin d’enfant of the polynomial is

• By means of an affine change of variables the polynomial can be brought to the
form p(z) = z4(z2 + 6z + 25)

Proof The permutations of 6 elements given by the action of PGL2(5) on P1(F5) have
cycle structures 16, 2212, 23, 4112, 32, 5111, 61. Since the derivative of a polynomial of
degree 6 has 5 roots counted with multiplicities, the cycle structures of permutations
corresponding to small loops around the critical values must be either 2212, 23, or
2212, 4112. The first choice corresponds (according to Theorem 18 from Khovanskii
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2007) to the case of Chebyshev polynomial. A polynomial with passport [2212, 4112]
can have one of the two dessins d’enfant:

A polynomial with the first dessin d’enfant is a composition of a polynomial of
degree 3 and a polynomial of degree 2.

The monodromy group of a polynomial with the second dessin d’enfant is
PGL2(5).

Indeed, if one labels the edges of the dessin as in the picture below,

then the small loops around the critical values going in counterclockwise direction
correspond to the permutations x → 1

x mod 5 and x → 2x + 2 mod 5, which
generate the group PGL2(5).

We now show that by an affine change of variables a polynomial of degree six with
monodromy group PGL2(5) can be brought to the form z4(z2 + 6z + 25).

As we have found above, the passport of such a polynomial p is [2212, 4112]. By an
affine change of coordinates one can make the point of multiplicity 4 to be at zero and
make the polynomial vanish at this point. One can also make the leading coefficient
of the polynomial be 1. Then the polynomial has the form p(z) = z4(z2 + az + b).
Its derivative is p′(z) = z3(6z2 + 5az + 4b). The values of the polynomial p at the
zeroes of the factor 6z2+5az+4bmust be equal, and hence the remainder of division
of p by 6z2 + 5az + 4b must be a constant polynomial. The coefficient at z of the
remainder of division of p by 6z2 + 5az + 4b is 1

65
a(96b − 25a2)(36b − 25a2). If

a = 0, then the polynomial p is a composition of a polynomial of degree 3 and the
polynomial z2. If 96b = 25a2, then 6z2 + 5az + 4b is a perfect square, and hence the
passport of p is not [2212, 4112]. Finally if 36b = 25a2, then by a linear change of
variables one can make p to be the polynomial z4(z2 + 6z + 25) with critical values

0 and − 2455

33
.
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A picture of the dessin d’enfant of this polynomial on which the preimage of the
upper half-plane is colored black (and red and yellow dots are the preimages of the
critical values) is as follows:

�


6.2 Polynomials Invertible in 6-Radicals

According to Theorem 9, polynomials invertible in 6-radicals are compositions of
power polynomials, Chebyshev polynomials, polynomials of degree at most 6 and
polynomials of degree 10 with monodromy group isomorphic to the group P�L2(9)
with its natural action on the 10 points of projective line over the field with nine
elements F9.

Theorem 11 A primitive polynomial of degree 10 is invertible in 6-radicals if and
only if one of the following conditions holds:

• The monodromy group of the polynomial is isomorphic to the group P�L2(9) with
its natural action on P1(F9)

• The dessin d’enfant of the polynomial is

• By means of an affine change of variables the polynomial can be brought to the

form p(z) = (
z2 − 81

500

)4 (
z2 + z + 189

500

)
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Proof One can check Müller (1993), p. 10, that the only possible passport of a poly-
nomial of degree 10 with monodromy group P�L2(9) is the passport [2314, 4212].

We will let i denote an element i ∈ F9 satisfying i2 = −1. We will also denote the
Frobenius automorphism of the field F9 by x → x .

The group P�L2(9) acting on 10 elements of the projective line over the field F9
contains only one conjugacy class of a 10-cycle: it is the class C1 of the element 1+x

i−x .
It also contains only one conjugacy class C2 of an element with cycle structure 2314:
it is the class of the element x → x . There are two conjugacy classes of elements with
cycle structure 1242: the class C3 of element x → (1 + i)x and the class C3 of the
element x → (1 + i)x . Only the class C3 can correspond to local monodromy of our
polynomial, since the product of elements of classes C1,C3 belongs to the subgroup
PGL2(9) of the group P�L2(9), and thus can’t belong to C2. One can verify that
there exists only one solution (up to conjugacy) of the equation σ1σ2σ3 = 1 with
σi ∈ Ci : σ1 = x → 1+x

i−x ,σ2 = x → x ,σ3 = x → i x−1
x+1 . Thus the branching data for

our polynomial are rigid (Völklein 1996), Definition 2.15. Hence our polynomial is
defined over the rationals (Völklein 1996), Theorem 3.8.

It follows from the above considerations that the dessin d’enfant of the polynomial
of degree 10 with monodromy group P�L2(9) is as follows:

Conversely, the monodromy group of a polynomial with such dessin is isomorphic
to P�L2(9), because one can label the edges of the dessin with elements of P1(F9)
as follows:
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Then local monodromies around the critical values correspond to the permutations
x → x (corresponding to yellow vertices in the figure) and x → i x−1

x+1 (corresponding
to red vertices in the figure), which generate the group P�L2(9).

We now show that using an affine change of variables the polynomial can be brought

to the form
(
z2 − 81

500

)4 (
z2 + z + 189

500

)
. By means of a change of variables defined

over the rationals one can make sure that the critical value corresponding to the critical
points of order 4 is zero. One can also make the average of the these two critical points
be at zero. By means of a further change of variables one can bring the polynomial
to the form p(z) = (z2 − a)3(z2 + z + b). In this case p′(z) = (z2 − a)3(10z3 +
9z2 + (8b − 2a)z − a). Since the values of p at the zeroes of the polynomial q3(z) =
10z3 + 9z2 + (8b − 2a)z − a must be equal, the remainder from division of p by q3
must be a constant polynomial. Equating the coefficients at z and z2 of this remainder
to zero and eliminating the variable b we find that the value of a can be equal either
to −27

100 , or to
81
500 , or to a root of a polynomial of degree 5 or 9, that is irreducible over

the rationals.
The value a = − 27

100 corresponds to the case when q3 is a perfect cube, in which
the passport of the polynomial p is not the one that we want.

The value a = 81
500 corresponds to b = 189

500 .
The cases when a is a root of irreducible over Q polynomials of degree 5 or 9

correspond to polynomials with monodromy groups different from P�L2(9) (we
have seen above that our polynomial is defined over Q).

Thus by means of an affine change of variables the polynomial can be made equal

to the polynomial
(
z2 − 81

500

)4 (
z2 + z + 189

500

)
with critical values 0 and 24312

515
.

A picture of the dessin d’enfant of this polynomial on which the preimage of the
upper half-plane is colored black (and red and yellow dots are the preimages of the
critical values) is as follows:

�


6.3 Polynomials Invertible in 7-Radicals

According to Theorem 9, polynomials invertible in 7-radicals are compositions of
power polynomials, Chebyshev polynomials, polynomials of degree at most 7, poly-
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nomials of degree 10 with monodromy group isomorphic to P�L2(9) described in
Sect. 6.2, and polynomials of degree 8withmonodromygroup isomorphic to PGL2(7)
with its natural action on the 8 points of the projective line over the field F7.

Theorem 12 A primitive polynomial of degree 8 is invertible in 7-radicals if and only
if one of the following conditions holds:

• The monodromy group of the polynomials is isomorphic to the group PGL2(7)
with its natural action on P1(F7),

• The dessin d’enfant of the polynomial is one of the following:

• By means of an affine change of variables the polynomial can be brought to the

form p(z) = (z2 + 25+22
√
2

64 )3(z2 + z + 97+54
√
2

64 ) or to the form p(z) = (z2 +
25−22

√
2

64 )3(z2 + z + 97−54
√
2

64 ).

Proof One can verify Müller (1993), p. 6, that the only possible passport of a polyno-
mial of degree 8 with monodromy group PGL2(7) is the passport [2312, 3212].

A polynomial with this passport can have one of the following dessins:

A polynomial with one of the top two dessins is a composition of polynomials of
degree 2 and degree 4 (indeed, each dessin is invariant under rotation by 180◦).

Themonodromy groups of polynomials with the bottom two dessins are isomorphic
to the group PGL2(7). Indeed, if the edges of the dessins are labelled by elements of
P1(F7) as on the pictures below,
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then the local monodromies around the critical values correspond to the permutations
x → 1

x and x → 2 − 3x for the first of them, and to the permutations x → 1
x and

x → 1 − 3x for the second. In each case they generate the group PGL2(7).
The group PGL2(7), acting on 8 elements of the projective line over F7 contains

two conjugacy classes of 8-cycles: the class C1 of the element 3
2−x and the class C ′

1 of

the element 3
1−x . It contains one conjugacy classC2 of an element with cycle structure

1223: it is the class of the element x → 1
x . There is one conjugacy class of an element

with cycle structure 1232: the class C3 of the element x → 2x . One can show that
up to conjugacy there is only one solution of the equation σ1σ2σ3 = 1 with σi ∈ Ci

(namely σ1 = x → 3
2−x , σ2 = x → 1

x , σ3 = x → 2 − 3x). Also there is only
one solution of the equation σ1σ2σ3 = 1 with σ1 ∈ C ′

1,σ2 ∈ C2,σ3 ∈ C3 (namely
σ1 = x → 3

1−x , σ2 = x → 1
x , σ3 = x → 1 − 3x).

Thus the branching data for our polynomial are rigid. The 8-cycle is defined over
an extension of Q by a root of unity of order 8. Thus our polynomial is defined over
the extension Q(

√
2, i) of degree 4 over Q.

As in the previous section, we can assume that the polynomial has the form p(z) =
(z2 − a)3(z2 + z + b). Then p′(z) = (z2 − a)2(8z3 + 7z2 + (6b − 2a)z − a).
Since the values of the polynomial p at the zeroes of the polynomial q3(z) = 8z3 +
7z2 + (6b−2a)z−a must be equal, the remainder from division of p by q3 must be a
constant polynomial. Equating the coefficients at z and z2 of this remainder to zero and
eliminating the variable bwefind that either a = − 343

1728 , or 4096a
2+3200a−343 = 0,

or a is a root of a polynomial of degree 6 that is irreducible over the rationals.
The value a = − 343

1728 corresponds to the case when q3 is a perfect cube. In this
case the passport of the polynomial is not the one we are looking for.

The value a = −25±22
√
2

64 corresponds to b = 97∓54
√
2

64 .
The case when a is a root of an irreducible degree 6 polynomial overQ corresponds

to polynomial with monodromy group different from PGL2(7) (our polynomial is
defined over Q(

√
2, i)).

Pictures of the dessin d’enfants of these polynomials on which the preimage of the
upper half-plane is colored black (and red and yellow dots are the preimages of the
critical values) is as follows:
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�


6.4 Polynomials Invertible in k-Radicals, 8 ≤ k ≤ 14

According to Theorem 9, polynomials invertible in k-radicals for 8 ≤ k ≤ 14 are
compositions of power polynomials, Chebyshev polynomials, polynomials of degree
at most k, polynomials of degree 10 with monodromy group isomorphic to P�L2(9)
described in Sect. 6.2 and polynomials of degree 15 with monodromy group isomor-
phic to PGL4(2)with its natural action either on the 15 points or on the 15 hyperplanes
of the thee-dimensional projective space over the field F2.

Polynomials of degree 15 with monodromy group isomorphic to PGL4(2) can
have one of the following passports (Jones and Zvonkin 2002; Adrianov 1997):
[2613, 2417, 2417], [432111, 2417], [422213, 2613], [61322111, 2417].

Such polynomials had been investigated in Cassou-Noguès and Couveignes (1999)
in context of finding pairs of polynomials g, h such that the curve g(x) = h(y) is
reducible. In Cassou-Noguès and Couveignes (1999) it is proved that a polynomial
with monodromy group isomorphic to PGL4(2) and passport [2613, 2417, 2417] can
be brought by an affine change of variables to the form

gat (x) = x15

15
+ (a − 1)t x13 + (a + 7)t x12 − (5a + 21)t2x11 + 2(37a − 71)t2x10

− (261a − 349)(151598t + 141075a − 109260)t2

454794
x9

− (649a + 703)t3x8

+ 3(46a + 239)(76579t + 198260a − 462560)t3

76579
x7

− 4(548a − 1939)(259891t + 106365a − 26420)t3

259891
x6
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+ 3(1945a − 1581)(7278308t + 14685825a − 113700500)t4

36391540
x5

+ 3(3233a + 2051)(877444t + 1339725a − 2162500)t4

877444
x4

+ 9(9a − 133)
(
50448t2−162040at−320375a − 1260960t + 23500

)
t4

16816
x3

+ 9(403a − 1559)(5108t + 9165a − 39620)t5

2554
x2

− 135

16
(7a + 5)(4t − 75a − 100)(4t + 5a − 4)t5x

+ 675(a − 8)(t − 16)t6,

where a is one of the two roots of the equation a2 − a + 4 = 0 and t is a complex
number.

This result is mentioned there only briefly and leaves several questions unanswered:
Do all the polynomials from the families gat have monodromy group PGL4(2)

with action on the points or on the hyperplanes of the space P3(F2) depending on the
choice of a for all parameters t �= 0?

Can all the polynomials of degree 15 with monodromy group isomorphic to
PGL4(2) can be brought by an affine change of variables to the form gat (x) for some
t and some choice of a? In particular do all the polynomials with monodromy group
PGL4(2)with passports [432111, 2417], [422213, 2613], [61322111, 2417] correspond
to some values of the parameter? It is certainly true for some of them. For instance for
t = 75/4 the polynomial gat has passport [422213, 2613] and dessin d’enfant

(or its reflection for the other choice of a).
For t = −5/4 the polynomial has the passport [61322111, 2417] and dessin d’enfant
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(or its reflection for the other choice of a).
For t = −405/4 it has the passport [432111, 2417], and dessin d’enfant

(or its reflection for the other choice of a).
We thank Michael Zieve, who communicated these special values of t to us in

personal correspondence.

6.5 Polynomials Invertible in k-Radicals for k ≥ 15

According to Theorem 9, polynomials invertible in k-radicals for k ≥ 15 are compo-
sitions of power polynomials, Chebyshev polynomials and polynomials of degree at
most k.

Thus there are no “exceptional” polynomials invertible in k-radicals for k ≥ 15.
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